This is really like an ARMA model in many respects, but you specify the square root of the variance (sigma), and the autocorrelations at lags 1...maxLag, instead of specifying autoregressive and moving average polynomials. This means that we have to fall back on the Durbin-Levinson recursions for likelihood computations, instead of using more efficient recursions from Brockwell & Davis.
More...
|
| ACFModel (int maxLag) |
|
void | CarryOutPreMLEComputations () |
|
virtual MathNet.Numerics.LinearAlgebra.Vector< double > | ParameterToCube (MathNet.Numerics.LinearAlgebra.Vector< double > param) |
|
virtual MathNet.Numerics.LinearAlgebra.Vector< double > | CubeToParameter (MathNet.Numerics.LinearAlgebra.Vector< double > cube) |
|
virtual void | ResetRealTimePrediction () |
|
virtual void | Register (Data.TimeSeries series) |
|
virtual double | Register (DateTime timeStamp, double value, double[] auxValues) |
|
virtual double | Register (DateTime timeStamp, double value) |
|
virtual DistributionSummary | GetCurrentPredictor (DateTime futureTime) |
|
double | Rho (int lag) |
|
void | SetRho (int lag, double value) |
|
override int | NumOutputs () |
|
override object | GetOutput (int socket) |
|
override string | GetOutputName (int index) |
|
override string | GetParameterName (int index) |
|
override string | GetParameterDescription (int index) |
|
override string | GetShortDescription () |
|
override double | LogLikelihood (MathNet.Numerics.LinearAlgebra.Vector< double > parameter, double penaltyFactor, bool fillOutputs) |
|
override Data.TimeSeries | SimulateData (List< DateTime > inputs, int randomSeed) |
| This function must simulate from the current model. More...
|
|
override object | BuildForecasts (object otherData, object inputs) |
| This function generates forecasts (or fitted values) for the specified inputs, based on the existing data object and current model parameters. Results are returned in a form that depends on the model, for example, as a TimeSeries of DistributionSummary objects More...
|
|
override MathNet.Numerics.LinearAlgebra.Vector< double > | ComputeACF (int outToLag, bool normalize) |
|
int | NumAuxiliaryFunctions () |
|
string | AuxiliaryFunctionName (int index) |
|
string | AuxiliaryFunctionHelp (int index) |
|
bool | AuxiliaryFunction (int index, out object output) |
|
override List< Type > | GetAllowedInputTypesFor (int socket) |
|
override List< Type > | GetOutputTypesFor (int socket) |
|
override int | NumInputs () |
|
override string | GetInputName (int socket) |
|
override bool | InputIsFree (int socket) |
|
override bool | SetInput (int socket, object item, StringBuilder failMsg) |
|
override int | NumOutputs () |
|
override object | GetOutput (int socket) |
|
override string | GetOutputName (int socket) |
|
string | GetDescription () |
|
bool | CanUseMLE () |
|
bool | CanUseMoM () |
|
bool | CanHandleNaNs () |
|
abstract double | LogLikelihood (Vector< double > parameter, double penaltyFactor, bool fillOutputs) |
| Returns the (possibly penalized) log-likelihood of the model with specified parameters and the current object theData. If parameter==null, it will use CURRENT parameters. If fillOutputs is true, then the residuals and any other outputs will be filled in. More...
|
|
virtual void | FitByMLE (int numIterationsLDS, int numIterationsOpt, double consistencyPenalty, Optimizer.OptimizationCallback optCallback) |
|
virtual void | FitByMoM () |
| Fits model by method of moments. This is the default method used of CanUseMLE is false. More...
|
|
bool | InputToOutputIsValid () |
|
bool | SetParameters (Vector< double > v) |
|
Vector< double > | ParameterToCube (Vector< double > param) |
|
Vector< double > | CubeToParameter (Vector< double > cube) |
|
void | Register (Data.TimeSeries series) |
|
|
override bool | CheckParameterValidity (MathNet.Numerics.LinearAlgebra.Vector< double > param) |
|
MathNet.Numerics.LinearAlgebra.Vector< double > | GetLikelihoodsFromResiduals (double[] res, double[] pvars) |
|
override MathNet.Numerics.LinearAlgebra.Vector< double > | ComputeConsequentialParameters (MathNet.Numerics.LinearAlgebra.Vector< double > parameter) |
|
void | LocalInitializeParameters () |
|
override void | InitializeParameters () |
| This function is called after OnDataConnection. It can assume valid data is available, and it must fill in valid default parameter values. It typically also sets default parameter states, for purposes of estimation. More...
|
|
double[] | ComputeSpecialResiduals (Data.TimeSeries startData, out double[] rs, int forecastHorizon, out double[] forecasts) |
| This function uses the Durbin-Levinson algorithm to get one-step predictors and residuals. More...
|
|
bool | DataIsLongitudinal () |
|
override bool | CheckDataValidity (object data, StringBuilder failMessage) |
| This function checks to see if the object can be cast into the appropriate form for the model. More...
|
|
override void | OnDataConnection () |
| This function is called immediately after a data object is connected to the model. Any initial processing (e.g. determining dimension of parameter vector, etc.) should be done here. More...
|
|
abstract Vector< double > | ComputeConsequentialParameters (Vector< double > parameter) |
| This function must fill in values of consequential parameters. These parameters are determined by the current ParameterState[] settings in ParameterStates. These can depend on the non-consequential parameters and the data set. The function should throw an exception if it is not possible. The parameter vector with parameters filled in should be returned. More...
|
|
double | NegativeLogLikelihood (Vector< double > partialCube) |
| This function is a wrapper for another function, to be passed to a minimizer. More...
|
|
abstract bool | CheckParameterValidity (Vector< double > param) |
| Checks for validity of parameters. More...
|
|
This is really like an ARMA model in many respects, but you specify the square root of the variance (sigma), and the autocorrelations at lags 1...maxLag, instead of specifying autoregressive and moving average polynomials. This means that we have to fall back on the Durbin-Levinson recursions for likelihood computations, instead of using more efficient recursions from Brockwell & Davis.