vector autoregressive model, fittable by method of moments only (Yule-Walker eqns)
More...
|
| VARModel (int order, int dimension) |
|
void | FitByMethodOfMoments () |
| For multivariate autoregressive models, we just solve the Yule-Walker equations to estimate parameters. This is conceptually straightforward (see any standard textbook), but requires a lot of linear algebra book-keeping. More...
|
|
override string | GetShortDescription () |
|
override string | GetParameterName (int index) |
|
override string | GetParameterDescription (int index) |
|
override int | NumOutputs () |
|
override object | GetOutput (int socket) |
|
override string | GetOutputName (int index) |
|
override double | LogLikelihood (Vector< double > parameter, double penaltyFactor, bool fillOutputs) |
| Returns the (possibly penalized) log-likelihood of the model with specified parameters and the current object theData. If parameter==null, it will use CURRENT parameters. If fillOutputs is true, then the residuals and any other outputs will be filled in. More...
|
|
override Data.TimeSeries | SimulateData (List< DateTime > inputs, int randomSeed) |
| This function must simulate from the current model. More...
|
|
override object | BuildForecasts (object otherData, object inputs) |
| This function generates forecasts (or fitted values) for the specified inputs, based on the existing data object and current model parameters. Results are returned in a form that depends on the model, for example, as a TimeSeries of DistributionSummary objects More...
|
|
override List< Type > | GetOutputTypesFor (int socket) |
|
override List< Type > | GetAllowedInputTypesFor (int socket) |
|
override int | NumInputs () |
|
override string | GetInputName (int socket) |
|
override bool | InputIsFree (int socket) |
|
override bool | SetInput (int socket, object item, StringBuilder failMsg) |
|
override List< Type > | GetAllowedInputTypesFor (int socket) |
|
string | GetDescription () |
|
bool | CanUseMLE () |
|
bool | CanUseMoM () |
|
bool | CanHandleNaNs () |
|
virtual void | FitByMLE (int numIterationsLDS, int numIterationsOpt, double consistencyPenalty, Optimizer.OptimizationCallback optCallback) |
|
virtual void | FitByMoM () |
| Fits model by method of moments. This is the default method used of CanUseMLE is false. More...
|
|
bool | InputToOutputIsValid () |
|
bool | SetParameters (Vector< double > v) |
|
|
override bool | CheckParameterValidity (Vector< double > param) |
| Checks for validity of parameters. More...
|
|
override Vector< double > | ComputeConsequentialParameters (Vector< double > parameter) |
| This function must fill in values of consequential parameters. These parameters are determined by the current ParameterState[] settings in ParameterStates. These can depend on the non-consequential parameters and the data set. The function should throw an exception if it is not possible. The parameter vector with parameters filled in should be returned. More...
|
|
override void | OnDataConnection () |
| This function is called immediately after a data object is connected to the model. Any initial processing (e.g. determining dimension of parameter vector, etc.) should be done here. More...
|
|
override void | InitializeParameters () |
| This function is called after OnDataConnection. It can assume valid data is available, and it must fill in valid default parameter values. It typically also sets default parameter states, for purposes of estimation. More...
|
|
override bool | CheckDataValidity (object data, StringBuilder failMessage) |
| This function checks to see if the object can be cast into the appropriate form for the model. More...
|
|
double | NegativeLogLikelihood (Vector< double > partialCube) |
| This function is a wrapper for another function, to be passed to a minimizer. More...
|
|
|
Vector< double > | mu |
|
int | order |
|
Matrix< double >[] | Phi |
|
Matrix< double > | Sigma |
|
int | NumParameters => dimension + dimension * dimension * (order + 1) |
|
int | dimension |
|
MVTimeSeries | mvts |
|
|
override string | Description [get] |
|
override Vector< double > | Parameters [get, set] |
|
int | Dimension [get, protected set] |
|
override Vector< double > | Parameters [get, set] |
|
abstract string | Description [get] |
| Should return a description of the model, including current parameter values if desired. More...
|
|
object | Residuals [get, protected set] |
|
object | TheData [get, set] |
|
double | GoodnessOfFit [get, protected set] |
|
abstract Vector< double > | Parameters [get, set] |
|
ParameterState[] | ParameterStates [get, set] |
|
string | ToolTipText [get, set] |
|
string | ToolTipText [get, set] |
|
|
enum | ParameterState { Free,
Locked,
Consequential
} |
|
object | theData |
|
static Vector< double > | CubeFix (Vector< double > cube) |
| This function makes sure that its vector argument really does contain an element of the unit hypercube. If not, it is mapped back to an element on the hypercube (the mapping is continuous). More...
|
|
vector autoregressive model, fittable by method of moments only (Yule-Walker eqns)
◆ BuildForecasts()
override object CronoSeries.TimeSeries.Models.VARModel.BuildForecasts |
( |
object |
otherData, |
|
|
object |
inputs |
|
) |
| |
|
inlinevirtual |
This function generates forecasts (or fitted values) for the specified inputs, based on the existing data object and current model parameters. Results are returned in a form that depends on the model, for example, as a TimeSeries of DistributionSummary objects
- Parameters
-
otherData | |
inputs | may have different interpretations, for time series, it is typically an IList of DateTime objects |
- Returns
- a model-dependent object: for example, a time series of distribution summaries
Implements CronoSeries.TimeSeries.Models.Model.
◆ CheckParameterValidity()
override bool CronoSeries.TimeSeries.Models.VARModel.CheckParameterValidity |
( |
Vector< double > |
param | ) |
|
|
inlineprotectedvirtual |
◆ ComputeConsequentialParameters()
override Vector<double> CronoSeries.TimeSeries.Models.VARModel.ComputeConsequentialParameters |
( |
Vector< double > |
parameter | ) |
|
|
inlineprotectedvirtual |
This function must fill in values of consequential parameters. These parameters are determined by the current ParameterState[] settings in ParameterStates. These can depend on the non-consequential parameters and the data set. The function should throw an exception if it is not possible. The parameter vector with parameters filled in should be returned.
Implements CronoSeries.TimeSeries.Models.Model.
◆ FitByMethodOfMoments()
void CronoSeries.TimeSeries.Models.VARModel.FitByMethodOfMoments |
( |
| ) |
|
|
inline |
For multivariate autoregressive models, we just solve the Yule-Walker equations to estimate parameters. This is conceptually straightforward (see any standard textbook), but requires a lot of linear algebra book-keeping.
Implements CronoSeries.TimeSeries.Models.IMoMEstimable.
◆ InitializeParameters()
override void CronoSeries.TimeSeries.Models.VARModel.InitializeParameters |
( |
| ) |
|
|
inlineprotectedvirtual |
This function is called after OnDataConnection. It can assume valid data is available, and it must fill in valid default parameter values. It typically also sets default parameter states, for purposes of estimation.
Implements CronoSeries.TimeSeries.Models.Model.
◆ LogLikelihood()
override double CronoSeries.TimeSeries.Models.VARModel.LogLikelihood |
( |
Vector< double > |
parameter, |
|
|
double |
penaltyFactor, |
|
|
bool |
fillOutputs |
|
) |
| |
|
inlinevirtual |
Returns the (possibly penalized) log-likelihood of the model with specified parameters and the current object theData. If parameter==null, it will use CURRENT parameters. If fillOutputs is true, then the residuals and any other outputs will be filled in.
- Returns
Implements CronoSeries.TimeSeries.Models.Model.
◆ OnDataConnection()
override void CronoSeries.TimeSeries.Models.VARModel.OnDataConnection |
( |
| ) |
|
|
inlineprotectedvirtual |
This function is called immediately after a data object is connected to the model. Any initial processing (e.g. determining dimension of parameter vector, etc.) should be done here.
Implements CronoSeries.TimeSeries.Models.Model.
◆ SimulateData()
override Data.TimeSeries CronoSeries.TimeSeries.Models.VARModel.SimulateData |
( |
List< DateTime > |
dateTimes, |
|
|
int |
randomSeed |
|
) |
| |
|
inlinevirtual |
This function must simulate from the current model.
- Parameters
-
dateTimes | these may have different interpretations, but for time series, is typically an IList of DateTime objects |
randomSeed | random number seed |
- Returns
Implements CronoSeries.TimeSeries.Models.Model.
The documentation for this class was generated from the following file:
- TimeSeries/Models/VARModel.cs